Zero Build Forum'20 International Virtual Forum on Zero Energy Buildings Passive House Day

FROM ZERO TO HERO

Speaker's Name: Panagiotis (Panos) Papassotiriou & Pavlos Michos

Speaker's Position & Institution:

Panos P. - Studio 2Pi Architects - Managing Director – Architect
Pavlos M. - 02 Architecture & Mech. Engineering - Managing Director – Mechanical Engineer

Passive House in the old town of Nafplio Peloponnese – Greece

Pavlos Michos -

Mechanical Engineer, MSc, MASHRAE, CPHD -

02 Architecture and Mechanical Engineering (https://www.0-2gr/)

Panagiotis (Panos) Papassotiriou -

Architect, Ba(hons) Dip. Arch. ARB -

Studio 2Pi Architecture (https://s2pia.com/)

THE TEAM

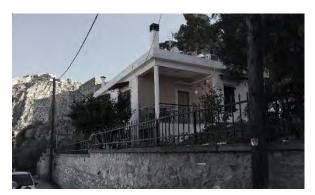
Stefan Pallantzas
 Msc Civil Engineer, President of Hellenic Passive
 House Institute

• Pavlos Michos -Mechanical Engineer, MSc, MASHRAE, CPHD

• Aggeliki Stathopoulou -Civil Engineer, Certified Passive House Designer

• Giorgos Taraviras -Civil Engineer, AUTh

• Panagiotis (Panos) Papassotiriou -Architect, Ba(hons) Dip. Arch. ARB



BEFORE

LOCATION

MATERIALS

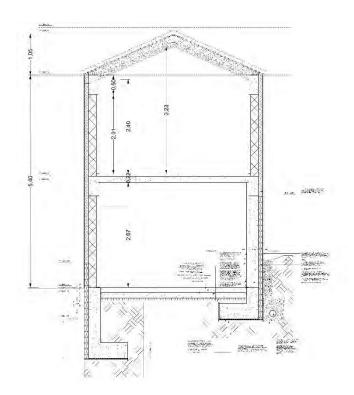
PARADIGMS

FORM & FUNCTION

FORM & FUNCTION

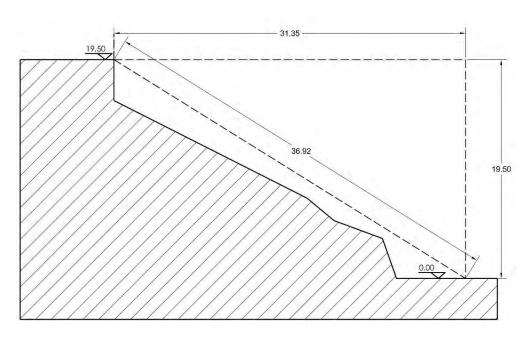
END PRODUCT (Almost there)

ALONG THE WAY



RESTRICTIONS: ARCHAEOLOGY DEPARTMENT

RESTRICTIONS: ACCESS TO SITE



RESTRICTIONS: ACCESS TO SITE

RESTRICTIONS: STRUCTURAL ISSUES

APARTMENT 03

Place: Nafplion, Greece

Climate Zone: Warm (Athens)

TFA: 158 m²
Occupants: 4.0

PHPP Result Overview

Heating Demand: $12.6 \, \text{kWh/(m}^2\text{a})$

Heating Load: 11.6 W/m²

Cooling Demand: 12.9 kWh/(m²a)

Cooling Load: 10.2 W/m²

PER Demand: 52.7 kWh/(m²a)

ENVELOPE

WALLS

Thermal Conductivity UT

YTONG PP2: 0.180 W/(m²K) YTONG PP4: 0.179 W/(m²K)

Brick Wall Stone: $0.233 \text{ W/(m}^2\text{K)}$ Concrete Wall: $0.283 \text{ W/(m}^2\text{K)}$

Average Weighted U-Value

Wall Ambient: 0.225 W/(m²K)

d: 100mm (λ=0,030 W/mK)

ENVELOPE

ROOF

Mineral Wool d=250 mm, λ =0.033 W/mK

 $U=0.121 W/(m^2K)$

ROOF SLAB

EPS Board

d=150 mm, λ =0.030 W/mK

U=0.187 W/(m²K)

FLOOR SLAB

EPS Board

d=30 mm, λ =0.030 W/mK

U=0.799 W/(m²K)

Average Weighted U-Value

0.247 W/(m²K)

ENVELOPE

WINDOW AREA

North: 28.14 m² South: 8.49 m² East: 0.79 m² West: 0.00 m²

Technical Specifications

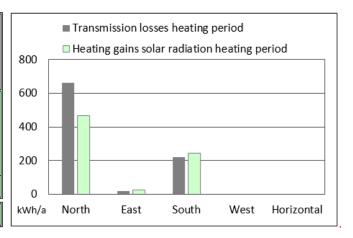
Triple Glazing (4:14/4/14/:4 Ar)

 $Uw=0.95-1.08 W/(m^2K)$

 $Ug=0.60 W/(m^2K)$

Uf=1.20 W/(m^2K)

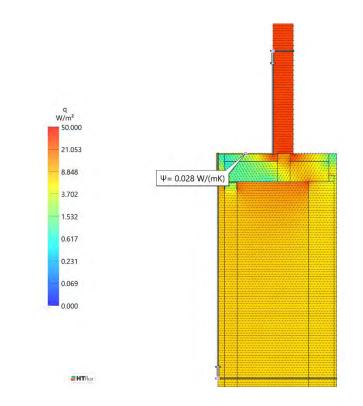
g-value: 0.60


Ψglazing: 0.027 (W/mK)

Ψ(installed): 0.075-0.086 W/(mK)

Average Weighted U-value

0.98 W/(m²K)


Transmission losses heating period	Heating gains solar radiation heating period		
kWh/a	kWh/a		
664	467		
21	27		
222	243		
0	0		
0	0		
907	737		

THERMAL BRIDGES

SHADING

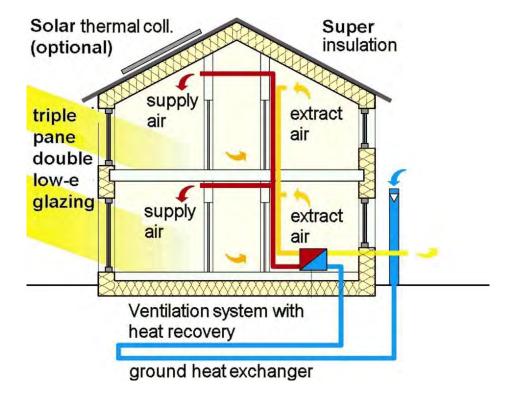
	Orientation	Glazing	Reduction factor	Reduction factor	Reduction factor	Solar load
		area [m²]	winter r _v	cooling r _{v,1}	cooling load r _{v,2}	[kWh/(m ² Glazinga)]
Γ	North	18,41	85%	32%	19%	49
	East	0,42	66%	31%	18%	107
	South	4,81	38%	19%	11%	62
	West	0,00	100%	100%	100%	0
	Horizontal	0,00	100%	100%	100%	0

MHRV SYSTEM

DESIGN

GF: $VSUP=130 \text{ m}^3/\text{h}$, $VETA=130 \text{ m}^3/\text{h}$ $VTRANS=80 \text{ m}^3/\text{h}$

FF: Vsup=110 m 3 /h, Veta=110 m 3 /h


SUM: VSUP=240 m³/h, VETA=240 m³/h

INSTALLATION

WOLF CWL-F 300 Excellent

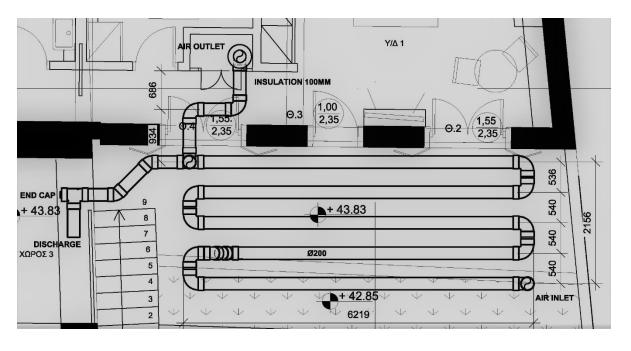
 $V_{SUP} = 65-226 \, \text{m} \, 3/h$

Efficiency: 85%

GROUND AIR HEAT EXCHANGER

DESIGN

Pipe: Ф200 PP Type: Meander


Building Volume: V=395 m3/h

Supply: VSUP=240 m3/h

Installation Depth: h=1.80-1.50 m

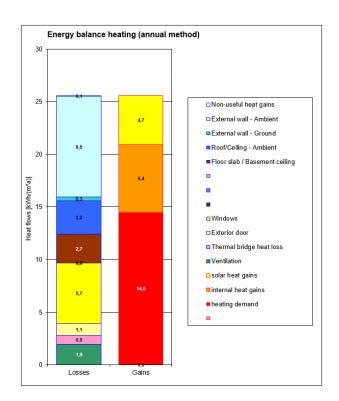
Slope: J=2 cm/m Length: L=34 m

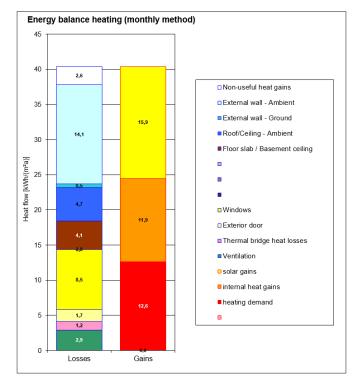
Efficiency: $\eta > 0.65$ (65%)

GROUND AIR HEAT EXCHANGER

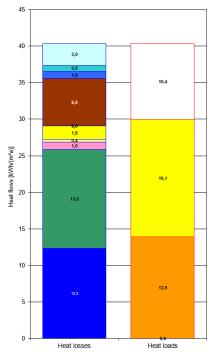
BLOWER DOOR TEST

HELLENIE PASSIVE MONE INSTITUTE	BUILDING LEAKAGE TEST Heldonic Passion Neter Institute leating Conflictation Department Amazinenses 12 Pagaggar, Astas 15669 Phone 13-03 711 4591189 Fax-100.71 4081169 Email: 8100@eack.org Viscoside wow.epsk.org			
ate of Test: 11/12/2019 and File: sacher3	Technician Project Number	Stefanos Pallantzas Apartment03	-	
ustomer: Christian Sacher Effirmiopoulou 18 Nafolion, Argolis 2100 Phone: Flax	Building Address.	Masorry Etherniopoulou 16 Nafplion, Argolis 211	00	
est Results at 50 Pascals:	Depressurization	Pressunzation	Avarage	
v50: m ² /h Airflov n50: 1/h (Air Change Rate)	320 (+/-3.8 %) 0.85	313 (+5-0.9%) 0.63	316 0.84	
w50: m³/(h·m² Floor Area) q50: m³/(h·m² Envelope Area)	2 02 0 70	1.98 0.86	2 00 0 69	
Canadian EqLA @ 10 Pa (om²)	117.4 (=/. 6 5 %)	1192 (+(-1.8%)	118.3	
cm ³ /m ² Surface Area LBL ELA @ 4 Pa (cm ²) cm ³ /m ² Surface Area	0.26 60.3 (±/- 10.6 %) 0.13	0.26 62,5 (+/- 2,9 %) 0.14	0.26 61.4 0.13	
uilding Leakage Curve: All Floro Coefficient (Cenv) m*(th Par) All Leakage Coefficient (CL) m*(th Par) Exponent (n) Correlation Coefficient	21.4 (+1.17.3 %) 21.5 (+1.17.3 %) 0.090 (+1.0.050) 0.99675	25.0 (1/. 4.8 %) 23.0 (1/. 4.8 %) 0.667 (*/-0.013) 0.99989		
est Standard: mil Mode: y5e of Test Method: egulation complied with	EN 13829 Depressuitzation and Pressunzakon B possive ficure standard = 50 ± 0.8 1/h			
500 400 Depressurze 300 Balding 200 Leskage (m*h)				

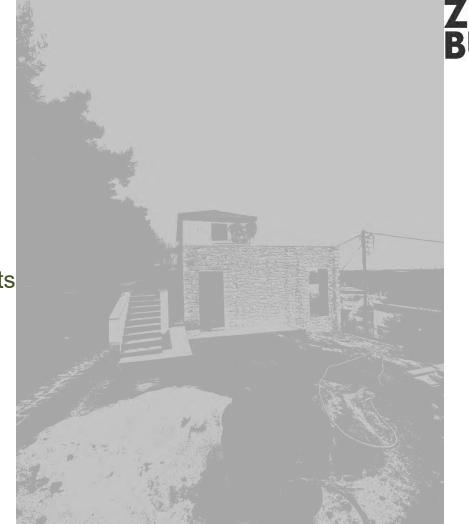

	Depressurization	Pressurization	Average	
Test Results at 50 Pascals:				
V50; m ³ /h Airflow	320 (+/- 3.8 %)	313 (+/- 0.9 %)	316	
n50: 1/h (Air Change Rate)	0.85	0.63	0.84	
w50; m³/(h-m² Floor Area)	2.02	1.98	2.00	
q50: m³/(h-m² Envelope Area)	0.70	0.66	0.89	



PHPP RESULTS - HEATING



PHPP RESULTS - COOLING



Thank you

Questions and Comments

PASSIVE HOUSE ASSOCIATION